Square Numbers, Spanning Trees and Invariants of Achiral Knots
نویسنده
چکیده
We examine and partially confirm some questions on properties of the the Alexander and HOMFLY polynomial of achiral knots. In particular we show that determinants of achiral knots are exactly the odd numbers representable as sums of two squares. Using the checkerboard coloring, then an analogous statement follows for the number of spanning trees in planar self-dual graphs.
منابع مشابه
Square Numbers and the Alexander and Homfly Polynomial of Achiral Knots
We examine and partially confirm some questions on properties of the the Alexander and HOMFLY polynomial of achiral knots. In particular we show that determinants of achiral knots are exactly the odd numbers representable as sums of two squares.
متن کاملar X iv : m at h / 02 10 17 4 v 1 [ m at h . G T ] 1 1 O ct 2 00 2 GENERATING FUNCTIONS , FIBONACCI NUMBERS AND RATIONAL KNOTS
We describe rational knots with any of the possible combinations of the properties (a)chirality, (non-)positivity, (non-)fiberedness, and unknotting number one (or higher), and determine exactly their number for a given number of crossings in terms of their generating functions. We show in particular how Fibonacci numbers occur in the enumeration of fibered achiral and unknotting number one rat...
متن کاملA Sequence of Degree One Vassiliev Invariants for Virtual Knots
For ordinary knots in 3-space, there are no degree one Vassiliev invariants. For virtual knots, however, the space of degree one Vassiliev invariants is infinite dimensional. We introduce a sequence of three degree one Vassiliev invariants of virtual knots of increasing strength. We demonstrate that the strongest invariant is a universal Vassiliev invariant of degree one for virtual knots in th...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001